

Contemporary Management of Carotid Disease "What We Know So Far"

Ammar Safar, MD, FSCAI, FACC, FACP, RPVI Interventional Cardiology & Endovascular Medicine

Disclosers

NONE

Epidemiology

- 80 % of stroke are ischemic
- Approximately 25% of strokes are due to carotid artery disease
- Stroke is the third most common cause of death in the U.S. and the leading cause of serious long-term disability

Risk of Stroke and Carotid Stenosis

1986 NEJM: 500 patisnts with aymptomatic bruit plus abnormal ultraspund

Recorded TIA/Stroke rates

Study period **4** years Mean follow up 26 months

Echogenicity

Risk of Stroke and Carotid Stenosis

- Patients with unilateral symptomatic carotid-artery stenosis
- Patients with asymptomatic contralateral stenosis
- The risk of stroke at <u>five years</u> after study entry in a total of 1820 patients increased with the severity of stenosis

Risk of Stroke and Carotid Stenosis

Symptoms

Symptomatic patient

- Transient Ischemic Attack (TIA)
- Amaurosis fugax (transient visual loss)
- Minor non-disabling stroke
- Cerebral infarction

Fun Facts:

- 35% of patients with a carotid <u>bruit</u> have >50% carotid stenosis
- Only 50% of patients with significant hemodynamic carotid stenosis have <u>a bruit</u> noted during physical examination

Evaluation

- Physical Exam
 - Noting cervical bruits
- Carotid Duplex Ultrasonography
 - Most frequent primary test today
- CT Arteriography (CTA)
- MR Arteriography (MRA)
- Diagnostic angiography
 - Considered highly accurate
 - Standard in clinical trials

Treatment Options

Medical therapy

Carotid Endarterectomy

Carotid artery Stenting

Medical Therapy

- Rationale:
 - Pathophysiology is thrombosis or atherosclerotic <u>debris release</u> from carotid artery plaque
 - Treatment directed toward risk factor reduction and thrombosis prevention, and should be a mainstay of treatment post procedure
- Optimal medical therapy includes:
 - Risk Factor Modification
 - Medications
- Medical therapy should be first course of therapy for:
 - Asymptomatic patients with <60% stenosis
 - Symptomatic patients with <50% stenosis

Medical Therapy

- Goals
 - Reduce the risk of future stroke
 - Control progression of carotid atherosclerosis
- Strategies to achieve goals
 - Antiplatelet or Anticoagulation therapy
 - Antihypertensive therapy
 - Statin therapy to lower serum cholesterol
 - Aggressive glycemic control
 - Quit smoking
 - Limit alcohol consumption
 - Diet and exercise
 - Duplex ultrasound monitoring for patients with stenosis of 50% or more

Carotid Endarterectomy (CEA)

Surgical procedure to <u>remove plaque</u> from the carotid artery

Goal: reduce future stroke risk

Gold standard therapy in patients at low surgical risk but who require reestablishment of blood supply and removal of plaque to prevent embolization

The superiority of CEA with medical therapy in comparison to medical therapy alone has been demonstrated in randomized prospective studies for two classes of Carotid Artery Disease patients:

- Symptomatic patients with stenosis >50%
- Asymptomatic patients with stenosis >75%

CEA vs. Medical Therapy

NASCET: North American Symptomatic Carotid Endarterectomy Trial

Design	Prospective, Multicenter, Randomized Controlled Trial					
Stratification	Endarterectomy + Medical Care (n=	=616) vs. Medical Ca	re Alone (n=596)			
Hypothesis	To test the potential benefit of CEA in patients with moderate or severe stenosis; standard risk patients					
Subjecter	Dandamized 1 212	Primary				
Subjects:	Randomized 1,212Filling VIpsilateral stroke50 (US and Canada)Endpoint:30 days, 1 year,Follow-up:					
Sites:						

& 2 years

- Patients stratified according to degree of stenosis:
 - moderate (<70%)
 - severe (70-99%)
- Trial demonstrated clear benefits from CEA relative to medical therapy with aspirin in symptomatic patients at standard risk for surgery.

NASCET Collaborators. Beneficial Effect of Carotid Endarterectomy in Symptomatic Patients with High Grade Carotid Stenosis N Engl J Med 1991; 325:445-53

NASCET Results

Results

- Symptomatic patients with ≥ 70% carotid stenosis derived substantial long term benefit from CEA
 - Medical event rate: close to 26%
 - CEA event rate 9%
- Symptomatic patients with moderate stenosis (50 – 69%), benefited much less (p = 0.045)
- Patients with <50% stenosis showed no benefit from CEA
- Safety monitoring committee stopped trial early for patients with 70 – 99% stenosis after *significant benefit* became apparent

NASCET Collaborators. Beneficial Effect of Carotid Endarterectomy in Symptomatic Patients with High Grade Carotid Stenosis N Engl J Med 1991; 325:445-53

CEA vs. Medical Therapy ACAS: Asymptomatic Carotid Atherosclerosis Study

Design	Prospective, Multicenter, Randomized Controlled Trial				
Stratification	CEA + aspirin & risk factor r alone (n=834)	eduction (n=825) vs	. aspirin & risk factor reduction		
Hypothesis	To determine whether the addition of carotid endarterectomy to aggressive medical management can reduce the incidence of cerebral infarction in patients with asymptomatic carotid artery stenosis				
	andomized 1,662 (follow- 30-day perioperative stro				
Subjects:	Randomized 1,662 (follow-		30-day perioperative stroke		
Subjects:	Randomized 1,662 (follow- up on 1,659)	Primary Endpoint:	30-day perioperative stroke or death plus subsequent stroke ipsilateral to the		
Subjects: Sites:	Randomized 1,662 (follow- up on 1,659) 39 (US and Canada)	Primary Endpoint:	30-day perioperative stroke or death plus subsequent stroke ipsilateral to the treated carotid artery		

Trial demonstrated clear benefits from CEA relative to medical therapy with aspirin in symptomatic patients at standard risk for surgery.

Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for Asymptomatic Carotid Artery Stenosis. JAMA 1995;273:1421-1428

ACAS Results

- 30-day stroke and death rate was higher in the CEA group: 2.3% vs.
 0.4%
- Absolute risk reduction of 5-year ipsilateral stroke was 5.9 %
- 1.2% stroke risk from pre-op angiogram

Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for Asymptomatic Carotid Artery Stenosis. JAMA 1995;273:1421-1428

NASCET/ACAS Trials Summary

- NASCET/ACAS were key trials that set up *CEA as the standard of care* for carotid disease vs. Medical Management
- Established AHA recommendations for *perioperative stroke risk*
 - Symptomatic ≥ 70% stenosis < 6% (Peri-operative Stroke & Death risk)
 - Asymptomatic ≥ 60% stenosis <3% (Peri-operative Stroke & Death risk)
- No Octogenarians (80 years old) enrolled in these studies
- **30 day results** not as definitive as long term results for absolute risk reduction for stroke
- ACAS and NASCET are **NORMAL-RISK** trials and cannot be directly compared to the high-risk CAS trials

NASCET Committee: Stroke 22 (6) 711-720, 1991; NASCET Committee: JAMA 273 (18): 1421-1428, 1995.

Carotid Endarterectomy (CEA)

American Heart Association and American Stroke Association recommendations on carotid endarterectomy for carotid stenosis

	RECOMMENDATION	LEVEL OF RECOMMENDATION
Symptomatic stenosis		
High-grade (≥ 70%)	Carotid endarterectomy performed by a surgeon with a perioperative morbidity rate < 6%	Class I Level of evidence A
Moderate (\geq 50% and < 70%)	Carotid endarterectomy, depending on patient-	Class I
	specific factors such as age, sex, comorbidities, and severity of initial symptoms	Level of evidence A
Mild (< 50%)	No indication for endarterectomy	Class I Level of evidence A
Asymptomatic stenosis		
High-grade (≥ 60%)	Endarterectomy performed by a surgeon with a	Class I
	perioperative morbidity and mortality rate $< 3\%$	Level of evidence A

Carotid Endarterectomy (CEA)

Anatomical limitations for CEA

Carotid Artery Stenting (CAS)

- Carotid artery stenting is a less invasive alternative to CEA
 - Goal to reduce future stroke risk
- Components of CAS include
 - Stent
 - Stabilizes and "traps" the plaque
 - Reduces the flow pressures on the plaque
 - Increases blood flow
 - Embolic Protection Device (EPD)
 - Designed to prevent embolization of debris released during a stenting procedure

Embolic Protection

- DEP devices
 - Filters
 - Porosity 100-150 μm
 - Distal occlusion
 - Flow reversal

Carotid Stenting

Carotid Stenting

CEA vs. CAS CREST: Carotid Revascularization Endarterectomy vs. Stenting Trial

Design	Prospective, Multicenter, Randomize	Prospective, Multicenter, Randomized Controlled Trial					
Stent/EPD	CEA (n=1240) vs. CAS: (n=1262)						
Hypothesis	 Superiority – Hazard Ratio for CAS Non-inferiority – CAS is not worse 	 Superiority – Hazard Ratio for CAS vs. CEA with multi-year follow-up (NIH Analysis) Non-inferiority – CAS is not worse than CEA at 1 year follow-up (FDA analysis) 					
Subjects:Lead-in1,564First PatientDecRandomized2,522							
Sites:	117 (108 US, 9 Canada)Enrollment:Lead-in completedApr 08Randomized completedJul 08						
Follow-up:	1 mo, 6 mos, every 6 mos for 4 years	First data presented Feb 10					

- CREST represents the largest, most rigorous, prospective randomized trial to show both stenting and surgery are safe and effective.
- Both CAS and CEA treatment groups had very low event rates confirming safety and effectiveness.
- CAS was proven non-inferior to CEA for the primary endpoint, and death, stroke, or MI at 30 days

Lal BK, Brott TG. The Carotid Revascularization Endarterectomy vs. Stenting Trial completes randomization: Lessons learned and anticipated results. J Vasc Surg 2009; 50:1224-1231

CREST Primary Endpoint: Stenting and Surgery Found to be Equally Durable

Any death, stroke or MI within the perioperative period plus ipsilateral stroke out to 4 years

Clark, CREST Presentation at International Stroke Conference on February 26, 2010

CREST **Peri-procedural Findings**

Outcome	CEA %	CAS %	p value
Periprocedural stroke+MI+death	4.5 📒	5.2	0.38
Periprocedural strokeMajor ipslateral strokeMinor ipsilateral stroke	2.3 0.3 1.4	4.1 0.9 2.9	0.01 0.09 0.009
Periprocedural MI	2.3	1.1	(in.13
Periprocedural death	0.3	0.7	0.18
Periprocedural cranial nerve injury	4.8	0.3	win ¹

Pre-specified Secondary Analysis by <u>Symptomatic Status</u>: *Peri-procedural period*

Death, Stroke, MI

	CAS	CEA	HR	P-value
Asymptomatic	3.5%	3.6%	HR = 1.02; 95% CI: 0.55-1.86	0.96
Symptomatic	6.7%	5.4%	HR = 1.26; 95% CI: 0.81-1.96	0.30

Death, Stroke

	CAS	CEA	HR	P-value
Asymptomatic	2.5%	1.4%	HR = 1.88; 95% CI: 0.79-4.42	0.15
Symptomatic	6.0%	3.2%	HR = 1.89; 95% CI: 1.11-3.21	0.019

Peri-procedural death, stroke rates for both CAS and CEA meet AHA guidelines in both asymptomatic and symptomatic patients

Brott TG., et al Stenting Compared to Endarterectomy for Treatment of Carotid Artery Stenosis. New England Journal of Medicine 2010; 363 11-23

CREST 4 years Findings

Outcome	CEA %	CAS %	p value
4 years stroke+MI+death	6.8	7.2	0.51
4 years stroke	2.3	2	0.085

Thomas G. Brott N Eng Journal of Med 2010

Pre-specified Secondary Analysis by Symptomatic Status: Peri-procedural period <u>plus ipsilateral stroke out to 4 years</u>

Death, Stroke, MI

	CAS	CEA	HR	P-value
Asymptomatic	5.6%	4.9%	HR = 1.17; 95% CI: 0.69-1.98	0.56
Symptomatic	8.6%	8.4%	HR = 1.08; 95% CI: 0.74-1.59	0.69

Death, Stroke

	CAS	CEA	HR	P-value
Asymptomatic	4.5%	2.7%	HR = 1.86; 95% CI: 0.95-3.66	0.54
Symptomatic	8.0%	6.4%	HR = 1.37; 95% CI: 0.90-2.09	0.14

No evidence of a difference for either treatment by symptomatic status

Brott TG., et al Stenting Compared to Endarterectomy for Treatment of Carotid Artery Stenosis. New England Journal of Medicine May 2010

CREST Findings Age

Younger patients have better outcome with CAS while older patients have better outcome with CEA

Thomas G. Brott N Eng Journal of Med 2010

120 days stroke and death risk

Age <70 yrs : CAS – 5.8% CEA – 5.7%

Age >70 yrs : CAS – 12% CEA – 5.9%

Arterial tortuosity and calcification in elderly prones to catheter provoked cerebral emboli Bonati LH Lancet 2010

CEA vs. CAS

Carotid Endarterectomy (CEA)		Carotid Artery Stenting (CAS)		
Pros	Cons	Pros	Cons	
	↑мı	\downarrow Periprocedural MI		
Periprocedural	\uparrow Cranial nerve injury	No cranial nerve injury	↑ Periprocedural stroke	
✓ Periprocedural stroke	\uparrow Wound infection	\downarrow Wound infection		
	Required GA	No GA required		
	Longer recovery	Minimally invasive		

So, What is the Optimal Strategy?

Matching Patient to Intervention

Treatment decisions depends on patient-specific factors

Risk factors for CEA Risk factors for CAS

Risk Factors for CEA

Medical Risk Factors

 CHF and left ventricular dysfunction
 Unstable angina or recent MI (<30 days)
 Coronary artery disease (CAD)
 Open heart surgery needed within 6 weeks
 Severe pulmonary dysfunction

- risk of worse outcome
- Similar stroke and death rate between low and high risk patient

Mozes J Vasc Surg 2004

Risk factors for CEA

Surgical / Anatomical risk factors

 Restenosis after prior CEA
 Previous ablative neck surgery (e.g. radical neck dissection, laryngectomy)
 Previous neck irradiation
 Contralateral vocal cord paralysis

□ Tracheostomy

Wound dehiscence

Risk Factors for CEA

Surgical / Anatomical risk factors

Anatomical Factors

- High carotid bifurcation (above C2)
 Extension of athersclerotic
- lesion into intracranial ICA or proximal CCA below clavicle

↑ Intraoperative or Peri-operative stroke

Risk Factors for CAS

Individualized Management

Optimal treatment selection specific for each patient *Lowest morbidty rate Most favorable outcomes*

What's on the Horizon?

Plaque Imaging

Do All Plaques Behave the Same?

Understanding Peri-Procedureal Strokes

Not all strokes appear on the day of the procedure

Understanding Peri-Procedureal Strokes

Delayed neurologic Events 1-30 days Open vs. Closed Cell design

	Total pop	Total population				
	Patients	All events	Post- even	-procedural its		
Open cell Closed cell Total	937 2242 3179	39 51 90	32 29 61←	2/3 of neuro events were delayed (1-30d)		
Cell type Open cell Closed cell Total	3179	4.2% 2.3% 2.83%	3.4° 1.3° 1.9°	2/0 2/0 2/0		

Stent Design Open vs. Closed cell

What is The Optimal Carotid Stent?

- Needs to offer:
 - Scaffolding
 - Lesion Containment
 - Conformability
 - Visibility
 - Ease of use
 - Low profile

New Mesh Stent Design

- Gore
- Terumo
- InspireMD

New Mesh Stents

Plaque Protrusion - OCT Mesh vs Closed cell stent

Direct Carotid Access High Rate Flow Reversal-TCAR

Roadster Outcomes

High Surgical Risk	Pivotal Group, ITT (n=141)		Pivotal Group, PP (n=136)	
S/D/MI*	5	3.5%	4	2.9%
Major Stroke	0	0%	0	0%
Minor Stroke	2	1.4%	1	0.7%
Death	2	1.4%	2	1.5%
MI	1	0.7%	1	0.7%
Stroke & Death	4	2.8%	3	2.2%
Cranial Nerve Injury (CNI)	1	0.7%	1	0.7%
CNI Unresolved at 6 Mos	0	0%	0	0%

TCAR

New Technologies in CAS

- Mesh-covered carotid stents likely to add benefit in terms of reducing not only clinical events but also surrogate DWI lesions
- Double-filtration and TCAR is already showing benefit both clinically (TCAR), and using DWI surrogates
- Patient CAS outcomes—already good—should improve further

CREST-2

Figure 1. CREST-2 parallel study design. Endpoint = stroke and death in first 30 days and ipsilateral stroke thereafter up to 4 years. S, screening; R, randomization.

Asymptomatic carotid disease

Examining CAS and CEA in the context of intensive medical therapy

2018 Kettering Cardiology Colloquium

THE TOT ARRENT BENJAMIN SENSITIST. NO COLLEGIUM

Congestive Heart Failure

Turning Failure into Success

Wednesday + February 21, 2018 10:30 a.m.-4 p.m.

> Subdate Community College Building 12, Conference Center

Keynote Speaker: Javed Butler, MD, MPH, MBA Heart Failure 2018: Where Are We and Where Are We Going!

Di Buller III a hedreg aufturfu in Cardiovascular Medicine and Advanced Heart failum and Transferd Medicine. Becanity socialist with Story Brook University in Rew York, Dr. Buller was a professor Uniof of Cardiology, and contractor of the Issael Institute of the university.

Pror to period block theory Book, Or. Butley was directed of Hawk failure Research at Emery Healthcare, atohose of Medicine at Emery University School of Medicine. In Atlanta, Seorgas, and Brecter of the Cantilac and Heart Long Transplant Programs at Gasenciat University in Nacholie, Terressee.

Dr. Butter, who is the recipient of anversity medigmus, awards for his contributions, to heart failure resourch, also has master degrees in Public Health hier insread lativentity and Business Administration from Divery University. Registration Fee: 525.0002 An investment

Fee Includes: Fering (Linch | Presentation | Panel Discussions | 3.5 CMC Double stat. Placet 2

CME Support: Circle101 249 4309, vr. vvl. anterophechurg/CNE

Register now at Aetheringhealth.org/2018Calloquium

The feature of the state of the

Thank You

Cell:937-765-2330

Questions???