What's New in Migraine?

Glen D. Solomon, MD, FACP
Professor and Chair
Department of Internal Medicine and Neurology
Wright State University Boonshoft School of Medicine

Disclosures

- No pharmaceutical company grants, honoraria, or advisory boards
- Work to support my dogs – Buck and Satchel

Diagnostic Criteria for Migraine

Table 1. Diagnostic Criteria for Migraine.*

Disease Classification

Migraine without aura (ICHD-3)

At least five attacks fulfilling the following criteria:

Headache attacks lasting 4–72 hr (untreated or unsuccessfully treated)

Headache has at least two of the following four characteristics:

Unilateral location

Pulsating quality

Moderate or severe pain intensity

Aggravation by or causing avoidance of routine physical activity (e.g., walking or climbing stairs)

During headache, at least one of the following:

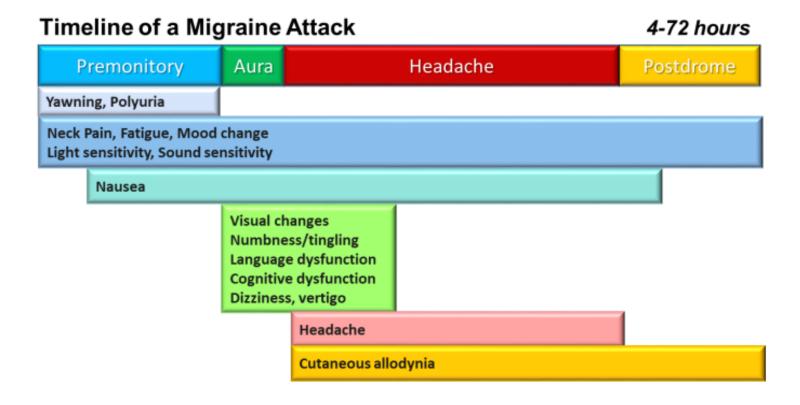
Nausea and vomiting

Photophobia and phonophobia

Headache is not better accounted for by another ICHD-3 diagnosis

Migraine (ID Migraine validation study)

During the past 3 mo, at least two of the following with headaches:


Nausea or sickness to stomach

Sensitivity to light (a lot more than when one did not have headaches)

Limited ability to work, study, or do what one needed to do for at least 1 day

^{*} The diagnostic criteria for migraine without aura are from the *International Classification of Headache Disorders*, third edition (ICHD-3).¹⁶ The simplified criteria for diagnosis of migraine were shown in the ID Migraine validation study to have a high positive predictive value (93% in a primary care setting).¹⁷

Timeline of a Migraine Attack

Migraine versus Secondary Headache

Table 2. Typical Features of Migraine versus "Red Flags" That Warrant Further Diagnostic Evaluation.

Feature

Typical features of migraine

History of multiple stereotypical attacks lasting 4-72 hr

No symptoms between attacks

Gradual onset of headache, neck pain

Vision, sensory, and language symptoms begin and progress gradually and last ≤1 hr (typical aura)

Yawning, neck pain, sensory sensitivity, fatigue, and mood change before and after headache

Family history of headache

Features suggestive of secondary headache

New onset of headache (particularly in persons older than 50 yr of age)

Headache lasting >72 hr

Vision, sensory, and language symptoms lasting >1 hr

Very sudden onset of headache or neurologic symptoms

Abnormal neurologic examination

Associated fever, systemic illness

Abortive Treatment of Migraine

Table 3. Selected Therapies for Acute Migraine.☆								
Class	Specific Treatments	Reported Mean Therapeutic Effects†	Common or Serious Adverse Effects	Comments				
Triptans ²⁶	Almotriptan, eletriptan, frovatrip- tan, naratriptan, rizatriptan, sumatriptan, zolmitriptan	Pain relief by 2 hr, 16–51%; pain-free by 2 hr, 9–32%; free of headache for 24 hr, 9–27%	Chest or facial muscle tightness, lightheadedness; contraindicat- ed in patients with coronary ar- tery disease	Response to and side-effect profile of different riptans varies in individual patients; nation or subcutaneous delivery may be more fective than oral delivery in patients with nausea or vomiting				
Ergots ^{23,28}	DHE nasal spray, DHE injection	Pain relief by 2 hr, 20–40% (for DHE nasal spray; limited evidence)	Nausea, dizziness; contraindicated in patients with peripheral vas- cular disease or coronary artery disease	Intravenous DHE is commonly used for refractory migraine				
Acetaminophen ²⁹		Pain relief by 2 hr, 19%; pain-free by 2 hr, 9%	Minimal with intermittent use	May be more effective in combination with antiemetic agent				
NSAIDs ⁵⁰	Aspirin, diclofenac, ibuprofen, ketorolac, naproxen	Pain relief by 2 hr, 17–29%; pain-free by 2 hr, 7–20%	Gastric irritation, excessive bleeding	May be effective individually or have additive benefit when taken with triptan; different oral preparations (effervescent or powder may have improved efficacy				
Combinations ^{31,32}	Acetaminophen-aspirin-caf- feine, sumatriptan-naproxen	Pain relief by 2 hr, 10–17% (limited evidence); pain-free by 2 hr, 20–30%	Same as with NSAIDs and triptans	Caffeine-containing preparations may have in creased potential for overuse; combination therapy is more effective than individual agents in some patients				
Antiemetic agents ^{23,29,30}	Chlorpromazine, metoclo- pramide, prochlorperazine	Pain relief by 2 hr with oral metoclo- pramide (plus aspirin or acetamin- ophen), 23%; pain relief by 1–2 hr with intravenous delivery in emer- gency department, 24–67%	Sedation, restlessness (akathisia), dystonic reactions	Phenothiazines plus metoclopramide have benefit for headache as well as nausea; ondansetron is commonly used for nau- sea, but evidence is lacking				
Single-pulse TMS ³³	SpringTMS	Pain-free by 2 hr, 17%	No clinically significant adverse effects	Handheld device for patient-delivered therapy; currently FDA-approved for treatment of acute migraine with aura				
CGRP receptor antago- nists ^{34,35} (under inves- tigation)	Rimegepant, ubrogepant	Pain-free by 2 hr, 14–18%	None reported; safety studies are ongoing	Phase 2 studies have been completed				

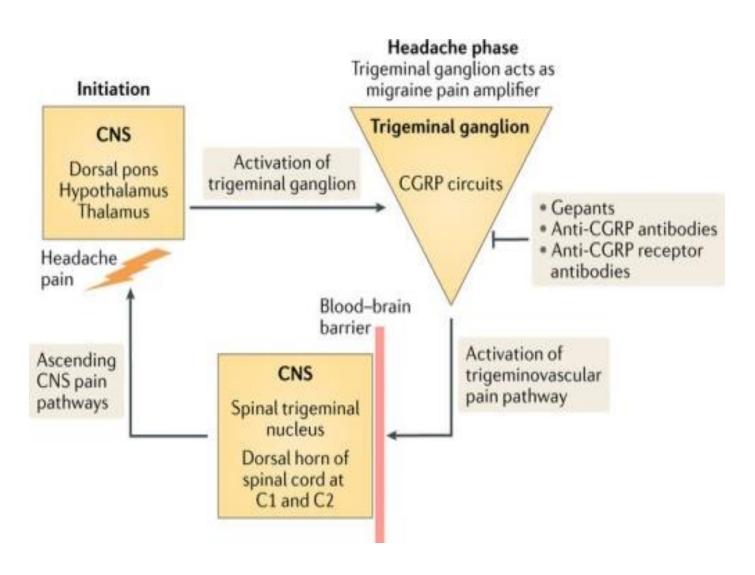
^{*} Shown are therapies that have high-quality supporting evidence or are highly recommended in guidelines from the American Headache Society,^{22,23} the Canadian Headache Society,²⁴ and the European Federation of Neurological Societies²⁵ as well as other Food and Drug Administration (FDA)–approved or emerging therapies. Citations are for primary trial data within guidelines except as noted; trials were of variable quality. All approaches are FDA-approved for the treatment of acute migraine except antiemetics and calcitonin gene–related peptide (CGRP) receptor antagonists. DHE denotes dihydroergotamine, NSAIDs nonsteroidal antiinflammatory drugs, and TMS transcranial magnetic stimulation.

† Values are the percentage of patients with pain relief or freedom from pain after a single dose of the treatment minus the percentage with pain relief or freedom from pain after placebo administration. In most cases, therapy was administered when pain was already moderate or severe.

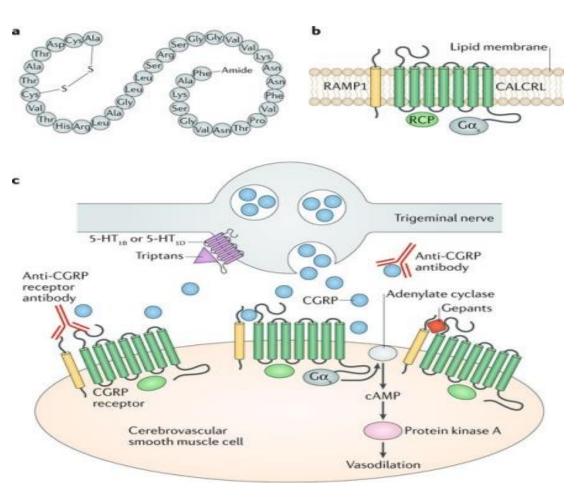
Preventive Treatment of Migraine

Table 4. Selected Preventive Therapies for Migraine.*							
Class	Specific Treatments	Reported Mean Monthly Therapeutic Effects†	Common or Serious Adverse Effects	Comments			
Tricyclic antidepressants ⁴¹	Amitriptyline, nortriptyline	Data not available	Dry mouth, sedation, weight gain, urinary retention	Low doses are typically used (10 to 50 mg); may be useful in patients with insomnia			
Beta-blockers ^{42,43}	Metoprolol, nadolol, propranolol,‡ timolol‡	Headache days, -0.4 (meta-analysis for propranolol)	Hypotension, exercise intoler- ance, sexual dysfunction	May be useful in patients with hypertension, tachycardia, or anxiety			
Anticonvulsant agent ⁴⁴	Topiramate‡	Episodic migraine days, -1.1 to -1.3; chronic migraine days, -1.5 to -3.3	Paresthesias, weight loss, cognitive dysfunction, depression	Also used for weight loss; preparations with various half-lives are available			
Anticonvulsant agent ⁴⁵	Divalproex sodium‡	Migraine days, -2.6; migraine attacks, -0.6 to -3.4	Tremor, weight gain, hair loss, fetal neural-tube defects	May be efficacious, but adverse effects limit its use			
Candesartan ⁴³		Headache days, -0.7 to -1.7; migraine days, -0.6 to -1.1	Dizziness	Side effects are generally acceptable			
Flunarizine ⁴¹		Migraine attacks, -1.2 to -1.8	Sedation, weight gain, depression	Not available in the United States			
Nonprescription therapies ⁴⁶	Coenzyme Q10, magnesium, melatonin, petasites, ribo- flavin	Migraine attacks: -1.1 with coenzyme Q10, -0.5 to -0.9 with magnesium, -0.8 with petasites or riboflavin	Diarrhea with magnesium	Side effects are generally acceptable, but current evidence of efficacy is poor			
Botulinum toxins ⁴⁷	OnabotulinumtoxinA‡	Chronic migraine headache days, –1.4 to –2.3; migraine days, –1.5 to –2.4	Muscle weakness, headache	Delivered by subcutaneous injection at multi- ple sites; approved for chronic migraine only			
Supraorbital nerve stimula- tion ⁴⁸	Cefaly device:			Headband with forehead stimulation; applied for 20 min daily			
Monoclonal antibodies targeting CGRP or its receptor 49.50 (under investigation) Eptinezumab, erenumab, fremanezumab, galcanezumab		Episodic migraine headache days, -1.0 to -1.2; high-frequency episodic migraine days, -2.8; days with chronic migraine headache, -2.5; hr with chronic migraine headache, -30.4	Injection-site reactions; safety studies are ongoing	Multiple phase 3 trials have been completed; administered subcutaneously or intravenously every 1 to 3 mo; rapid onset of efficacy; rates of response of 75% and in some cases 100% have been reported			

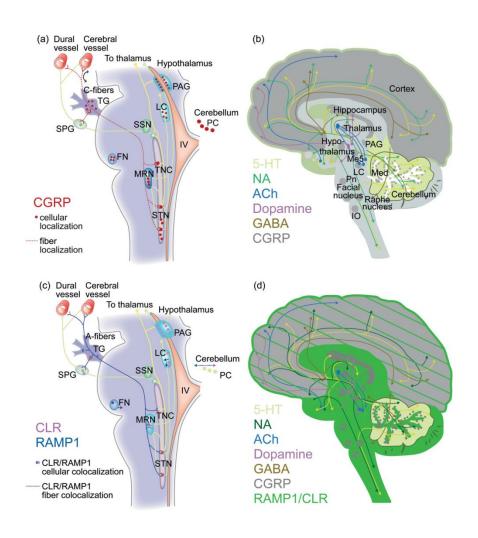
^{*} Shown are therapies that have high-quality supporting evidence or are highly recommended in guidelines are from American Academy of Neurology and the American Headache Society, 39,40 the Canadian Headache Society, 41 and the European Federation of Neurological Societies 25 as well as other FDA-approved or emerging therapies. Citations for primary clinical-trial data are included in these guidelines except where noted. All studies were of episodic migraine unless otherwise specified. Episodic migraine is defined as less than 15 headache days per month; chronic migraine is defined as 15 or more headache days per month, with migraine features on at least 8 of those days.


[†] Values are the number of migraine attacks, or number of days or hours with symptoms, per month with the treatment minus the number with placebo; negative values indicate a benefit with the treatment. The mean monthly effect (typically after 3 months of treatment) is summarized.

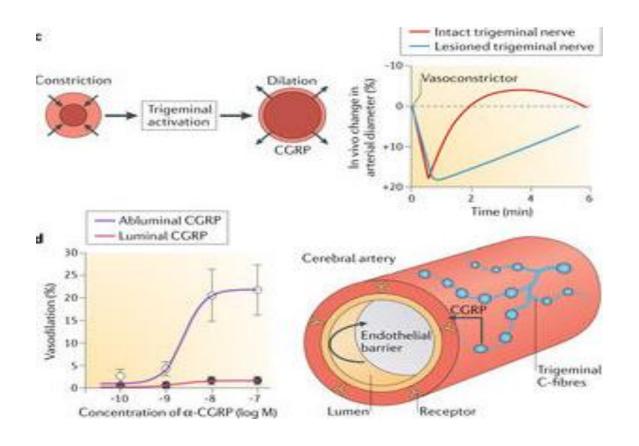
[‡]These therapies have been approved by the FDA as preventive therapies for migraine.

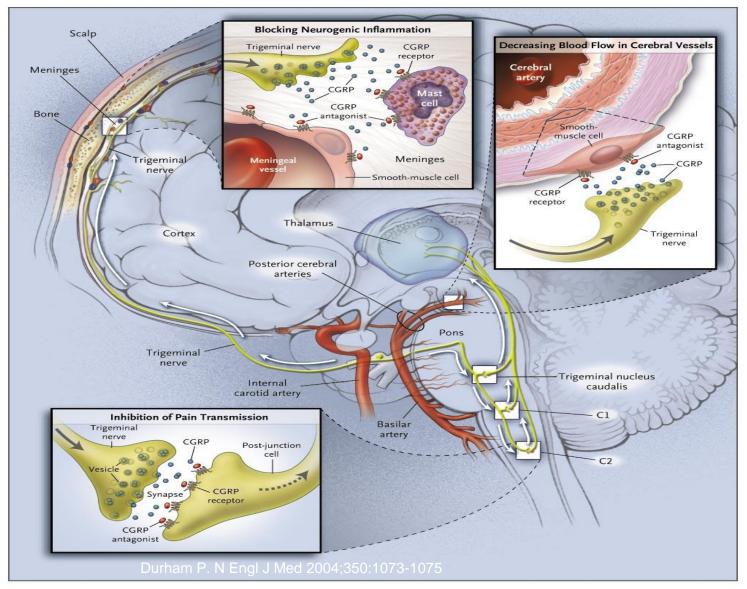

Calcitonin-Gene Related Peptide

- Calcitonin-gene related peptide (CGRP) is a 37 amino acid neuropeptide
- Potent vasodilator
- Maintenance of vascular homeostasis
- CNS: pain modulation, perception, and central sensitization
- Periphery: vasodilation and mast cell degranulation


Proposed involvement of the trigeminal ganglion in migraine headache and mode of action of CGRP-targeted therapies

Components of CGRP transmission and sites of action for CGRP-related migraine therapies


CGRP and RAMP 1 Receptor Sites


CGRP and CGRP Receptors in the Trigeminovascular System

CGRP and CGRP Receptors in the Trigeminovascular System

Possible Sites of Action of the Nonpeptide CGRP-Receptor Antagonist

ORIGINAL ARTICLE

Calcitonin Gene-Related Peptide Receptor Antagonist BIBN 4096 BS for the Acute Treatment of Migraine

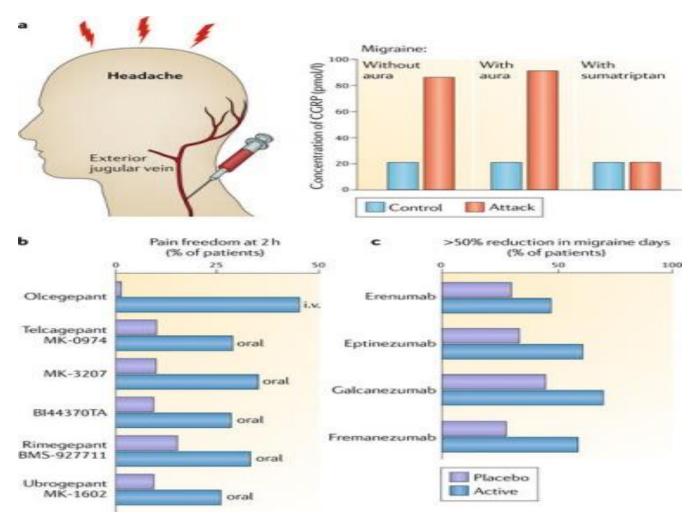
Jes Olesen, M.D., Hans-Christoph Diener, M.D., Ingo W. Husstedt, M.D., Peter J. Goadsby, M.D., David Hall, Ph.D., Ulrich Meier, Ph.D., Stephane Pollentier, M.D., and Lynna M. Lesko, M.D., for the BIBN 4096 BS Clinical Proof of Concept Study Group

ABSTRACT

From the Department of Neurology, Glos- Calcitonin gene-related peptide (CGRP) may have a causative role in migraine. We theretrup Hospital, University of Copenhagen, fore hypothesized that a CGRP-receptor antagonist might be effective in the treatment

ogy, London (P.J.G.); Boehringer Ingelheim In an international, multicenter, double-blind, randomized clinical trial of BIBN 4096 Pharmaceuticals, Ridgefield, Conn. (D.H., BS, a highly specific and potent nonpeptide CGRP-receptor antagonist, 126 patients LM.L.); and Boehringer Ingelheim Pharwith migraine received one of the following: placebo or 0.25, 0.5, 1, 2.5, 5, or 10 mg dress reprint requests to Dr. Olsen at the of BIBN 4096 BS intravenously over a period of 10 minutes. A group-sequential adap-University of Copenhagen, Department of tive treatment-assignment design was used to minimize the number of patients ex-

The 2.5-mg dose was selected, with a response rate of 66 percent, as compared with 27 percent for placebo (P=0.001). The BIBN 4096 BS group as a whole had a response rate of 60 percent. Significant superiority over placebo was also observed with respect to most secondary end points: the pain-free rate at 2 hours; the rate of sustained response over a period of 24 hours; the rate of recurrence of headache; improvement in nausea, photophobia, phonophobia, and functional capacity; and the time to meaningful relief. An effect was apparent after 30 minutes and increased over the next few hours. The overall rate of adverse events was 25 percent after the 2.5-mg dose of the drug and 20 percent for the BIBN 4096 BS group as a whole, as compared with 12 percent for placebo. The most frequent side effect was paresthesia. There were no serious adverse


CONCLUSIONS

The CGRP antagonist BIBN 4096 BS was effective in treating acute attacks of migraine.

ment of Neurology, University of Essen, of migraine attacks. Essen, Germany (H.-C.D.); the Department of Neurology, University Hospital, Münster, METHODS Germany (I.W.H.); the Institute of Neurol-Neurology, Glostrup Hospital, 2600 Glostrup, Copenhagen, Denmark, or at jeol@ glostruphosp.kbhamt.dk.

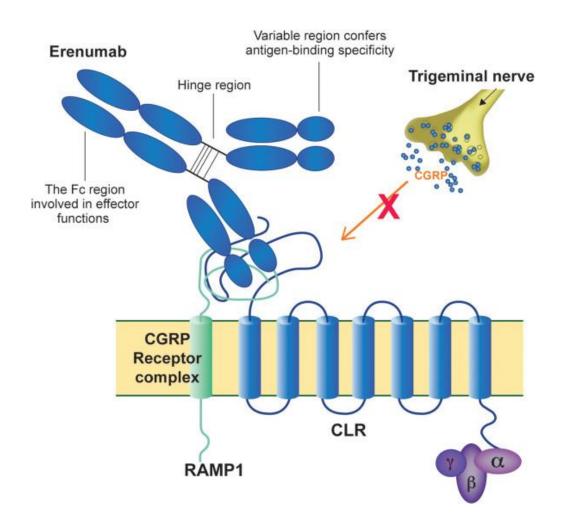
N Engl J Med 2004;350:1104-10. Copyright © 2004 Massachusetts Medical Society.

Clinical data that demonstrate that CGRP has an important role in migraine headache and its treatment

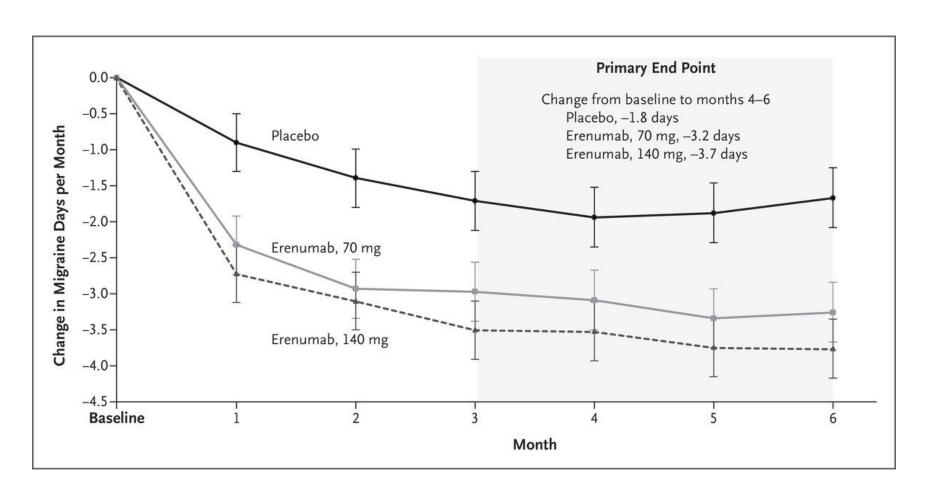
CGRP Receptor Antagonists

Oral agents for acute therapy

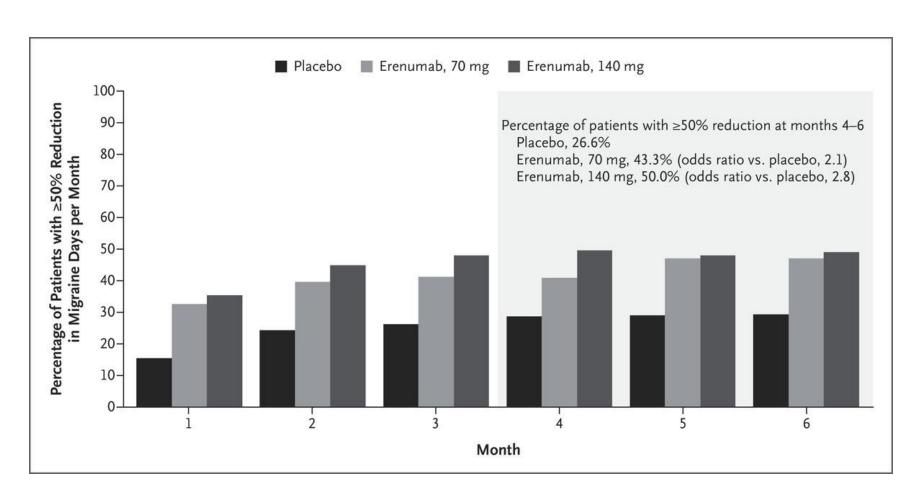
- Olcegepant
- Telcagepant
- Rimegepant
- Ubrogepant


CGRP Monoclonal Antibodies

- Long half-life injectable medications (IV or SQ)
- Developed for migraine prevention
- 4 in development
 - 3 target the CGRP ligand
 - Galcanezumab (Eli Lilly and Co.)
 - Eptinezumab (Alder Biopharmaceuticals)
 - Fremanezumab (Teva Pharmaceuticals)
 - 1 targets the CGRP receptor
 - Erenumab (Amgen)

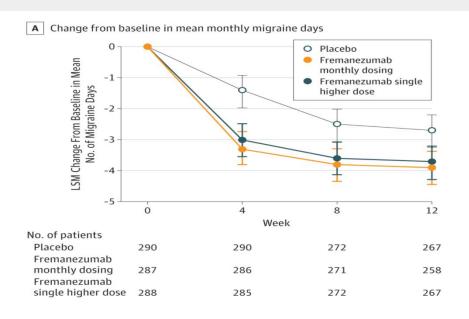

Concerns About CGRP Blockade

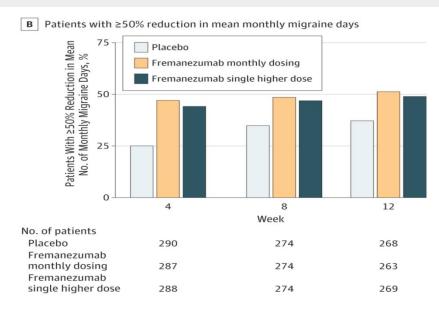
- CGRP is a vasodilator peptide
 - ? Medication-induced hypertension
 - ? Inhibition of cardio-protective mechanisms during ischemia
- Cochlear function
- Reduced expression of CGRP cisplatininduced renal injury
- Bone differentiation
- Pregnancy


Erenumab Binding

Erenumab (Aimovig) in Episodic Migraine

Erenumab (Aimovig) in Episodic Migraine

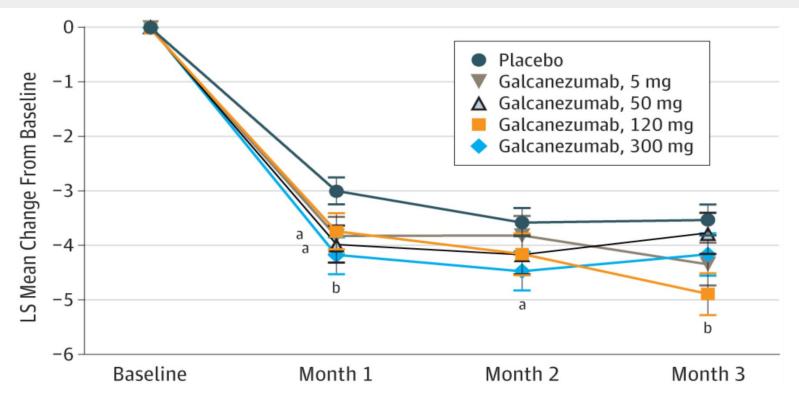




Date of download: 5/16/2018

From: Effect of Fremanezumab Compared With Placebo for Prevention of Episodic MigraineA Randomized Clinical Trial

JAMA. 2018;319(19):1999-2008. doi:10.1001/jama.2018.4853


Panel A For the primary analysis (analysis of covariance) of mean migraine days per month from baseline to week 12, the difference vs placebo for the fremanezumab monthly dosing group was –1.5 days (95% CI, –2.01 to –0.93 days; P<.001) and for the fremanezumab single-higher-dose group was –1.3 days (95% CI, –1.79 to –0.72 days; P<.001).

Panel B shows the percentage of patients with at least a 50% reduction in mean number of monthly migraine days during the 12 weeks following the first administration of the study drug. The overall difference vs placebo for the fremanezumab monthly dosing group was 19.8% (95% CI, 12.0%-27.6%; P<.001) and for the fremanezumab single-higher-dose group was 16.5% (95% CI, 8.9%-24.1%; P<.001).

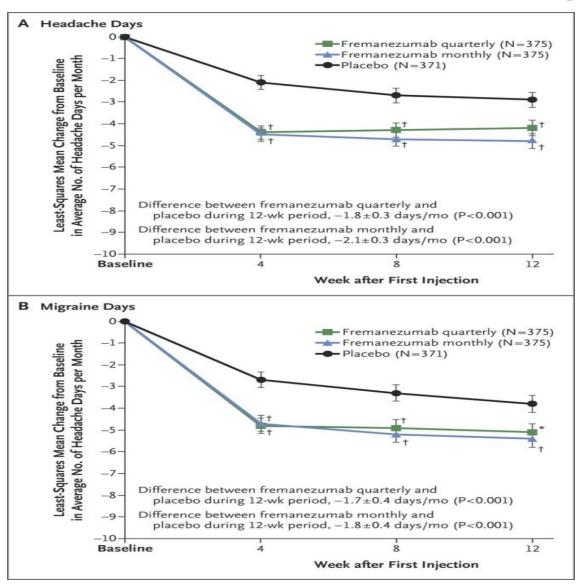
From: Effect of Different Doses of Galcanezumab vs Placebo for Episodic Migraine PreventionA Randomized Clinical Trial

JAMA Neurol. 2018;75(2):187-193. doi:10.1001/jamaneurol.2017.3859

Figure Legend:

Change in the Number of Migraine Headache Days During Study Period 3 From Baseline to End Point (Month 3 of Study Period 3) Among Patients Who Received Placebo or GalcanezumabLS indicates least square; error bars, SE.

^aP ≤ .05.


^bP < .01.

Copyright 2017 American Medical Association.
All Rights Reserved. This article is published under the JN-OA license and is free to read on the day of publication.

Galcanezumab in Episodic Cluster

- Galcanezumab met its primary endpoint in a Phase 3 study of patients with episodic cluster headache, demonstrating statistically significant differences in the reduction of weekly cluster headache attacks compared to placebo across weeks one to three of the two-month, double-blind treatment period.
- A statistically significantly greater percentage of patients treated with galcanezumab also achieved at least a 50 percent reduction in weekly cluster headache attacks compared to placebo at Week 3, the gated secondary endpoint.

Fremanezumab in Chronic Migraine

Primary endpoint results and 50% responder rates in phase II EM migraine prevention trials with CGRP mAbs

	Dose	Baseline migraine days/4 weeks (active/placebo)	Mean reduction of migraine days (weeks 8–12) active/placebo	50% responder rate (weeks 8–12) active/placebo
Galcanezumab	150 mg s.c.; every 14 days	6.7/7.0	-4.2/-3.0*	70/45
Eptinezumab	Single 1000 mg I.V.	8.8/8.4	-5.6/-4.6* (week 5-8)	77/67
Fremanezumab	625/225 mg s.c.; monthly	11.5/11.5/11.3	-6.09/-6.27/-3.46*	59/53/28 (week 1-12
Erenumab	70 mg s.c.; monthly	8.6/8.8	-3.4/-2.3*	46/30

From: The Changing Landscape of Pediatric Migraine TherapyA Review

JAMA Neurol. Published online March 12, 2018. doi:10.1001/jamaneurol.2018.0046

Table. Data on Nutraceuticals

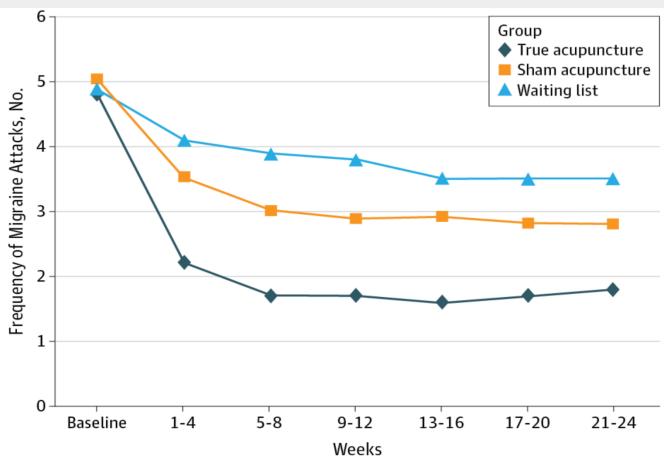
Date of download: 5/17/2018

Name	Proposed Mechanism of Action	Adverse Effects	Evidence in Children
Riboflavin	Action in mitochondrial energy production ⁵⁵	Yellow-orange coloration of urine ⁵⁶ ; gastrointestinal adverse effects (nausea, vomiting, diarrhea, and increased appetite) ⁵⁶⁻⁵⁸	A small retrospective open-label trial showed significant reduction in headache at 3-4 mo, but not at 6 mo. 56 Study was limited by the wide variation in diagnoses, including multiple periodic syndromes. 59 Two RCTs did not achieve statistical significance in reduction of migraine frequency, but were limited by high placebo effect, and medium dosing of riboflavin, respectively. 57,58
Magnesium	Role in ATP production and membrane stabilization, ⁶⁰ deficient in some pediatric patients with migraine ⁶¹	Gastrointestinal adverse effects including diarrhea ⁶²	Small, prospective open-label study including other periodic syndromes showed reduction in the frequency of periodic syndromes where migraine was included ⁶³ ; RCT including other periodic syndromes showed a downward trend of frequency. ⁶⁴
Coenzyme Q10	Action in mitochondrial energy production ⁵⁵	Tolerability excellent, 1 participant developed a cutaneous rash ⁶⁵	Open-label study ⁶⁶ that was converted to a crossover RCT ⁶⁷ showed reduction in frequency of migraines compared with placebo in the initial treatment period, but this was not sustained, limited by high dropout rate.
Butterbur ^a	Anti-inflammatory properties ⁵⁹	Contains pyrrolizidine alkaloids that are hepatotoxic, carcinogenic, and veno-occlusive ⁶⁸	Prospective open-label trial showed reduction in frequency of migraine headaches. ⁶⁹
Melatonin	Anti-inflammatory and analgesic effects ⁷⁰	Sleepiness, vomiting, and mild hypotension ⁷¹	Three-month small open-label trial, included children with migraine and tension-type headache showed reduction in frequency of headaches ⁷²

Cost of Drugs for Migraine Prevention

Drug	Some Available Formulations	Usual Adult Dosage ¹	Cost ²
Beta Blockers			
Metoprolol3 – generic	25, 50, 100 mg tabs	50-100 mg bid	\$1.80
Lopressor (Validus)	50, 100 mg tabs		57.60
extended-release – generic	25, 50, 100, 200 mg ER tabs	100-200 mg once/d	36.30
Toprol-XL (AstraZeneca)			53.90
Propranolol – generic	10, 20, 40, 60, 80 mg tabs	40-160 mg divided bid	20.40
extended-release – generic	60, 80, 120, 160 mg ER caps	60-160 mg once/d	50.10
Inderal LA (Akrimax)			530.40
Timolol – generic	5, 10, 20 mg tabs	10-15 mg bid or 20 mg once/d	75.30
Antiepileptic Drugs			
Valproate ⁴ – generic	125, 250, 500 mg delayed-release tabs;	250-500 mg bid	17.80
Depakote (Abbvie)	125 mg sprinkle caps		195.80
extended-release – generic	250, 500 mg ER tabs	500-1000 mg once/d	87.60
Depakote ER			156.60
Topiramate ⁵ – generic	25, 50, 100, 200 mg tabs;	50 mg bid ⁶	13.50
Topamax (Janssen)	15, 25 mg sprinkle caps		574.60
Tricyclic Antidepressants ³			
Amitriptyline – generic	10, 25, 50, 75, 100, 150 mg tabs	25-150 mg once/d	9.50
Nortriptyline – generic	10, 25, 50, 75 mg caps	25-150 mg once/d	8.00
SNRI ³			
Venlafaxine – generic	25, 37.5, 50, 75, 100 mg tabs	25-50 mg tid	47.70
extended-release - generic	37.5, 75, 150 mg caps;	75-150 mg once/d	11.70
	37.5, 75, 150, 225 mg tabs		
Effexor XR (Pfizer)	37.5, 75, 150 mg caps		352.50
Botulinum Toxin Type A			
OnabotulinumtoxinA – Botox (Allergan)7	100, 200 unit vials	155 units IM every 12 weeks8	1158.00 ⁹
Calcitonin Gene-Related Peptide Recep	tor Antagonist		
Erenumab-aooe - Aimovig	70 mg/mL prefilled syringe or		575.00 ¹⁰
(Amgen/Novartis)	Sure Click autoinjector		

What is the long-term efficacy of acupuncture for prophylaxis of migraine?


- **Findings** In this 24-week, randomized clinical trial that included 249 patients with migraine without aura, true acupuncture significantly reduced the frequency of migraine attacks, compared with sham acupuncture and being placed on a waiting list for treatment.
- Meaning Among patients with migraine without aura, true acupuncture may be associated with long-term reduction in migraine recurrence compared with sham acupuncture or waiting list.

JAMA Intern Med. 2017;177(4):508-515. doi:10.1001/jamainternmed.2016.9378

From: The Long-term Effect of Acupuncture for Migraine ProphylaxisA Randomized Clinical Trial

JAMA Intern Med. 2017;177(4):508-515. doi:10.1001/jamainternmed.2016.9378

Frequency of Migraine Attacks Throughout the Study

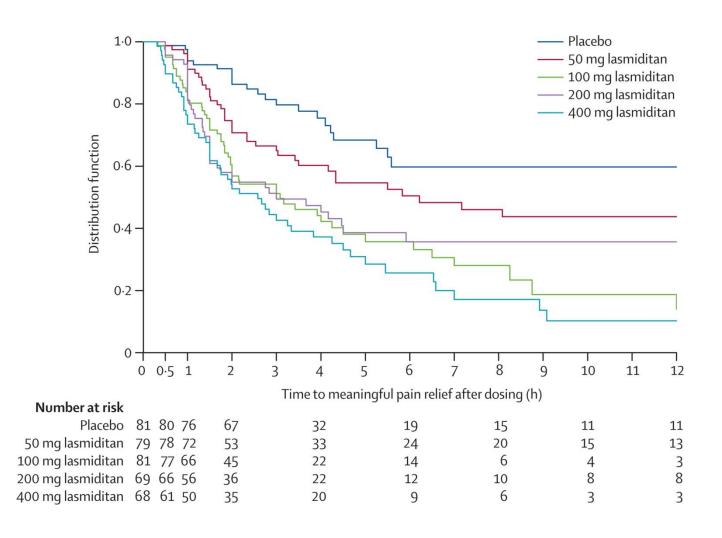
Hazard Ratios for Cardiovascular Disease in Migraine

Nurses' Health Study II (n=115 541)

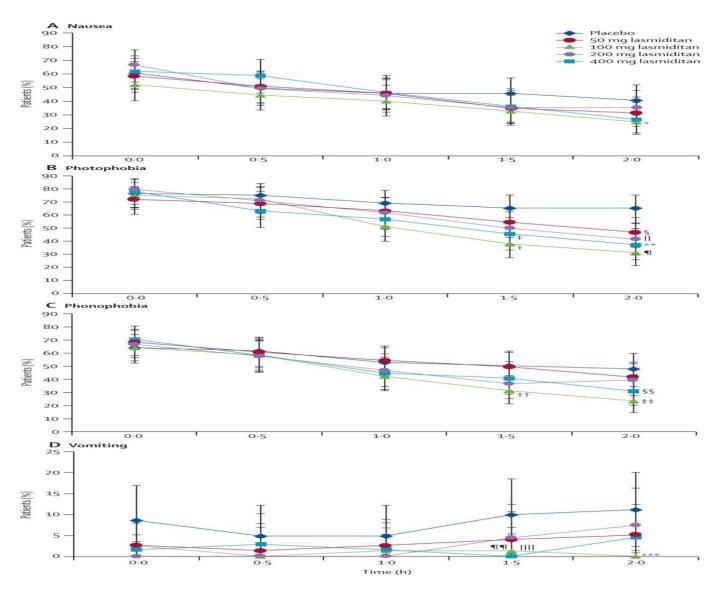
- Major cardiovascular disease event (n=1329):
 - > 1.84 (1.64 to 2.06) < 0.01
- Myocardial infarction (n=678):
 - > 1.79 (1.52 to 2.10) < 0.01
- Stroke (n=651):
 - > 1.89 (1.60 to 2.22) < 0.01
- Angina/coronary revascularization (n=203):
 - > 2.35 (1.77 to 3.12) < 0.01
- Cardiovascular mortality (n=223):
 - > 1.66 (1.25 to 2.21) < 0.01

Kurth et al. BMJ 2016:353:i2610

Serotonin Receptors


Table 1 Summary of the main characteristics of 5-HT₁ receptors

Receptor subtype	Distribution	Effector mechanism	Physiological action	Agonists used as antimigraine therapy	
5-HT _{1A} CNS Raphe nuclei, hippocampus, amygdala, septum, entorhinal cortex, hypothalamus PNS Cholinergic heteroceptor in myenteric plexus		Inhibition of adenylyl cyclase Opening of K ⁺ channels Inhibition of voltage gated Ca ²⁺ channels	Serotonergic auto receptor Neuronal inhibition Facilitate ACh and NA release Cholinergic nerve terminal in myenteric plexus Hyperphagia	None	
5-HT _{IB}	CNS Subiculum, substantia nigra PNS Vascular smooth muscle	Inhibition of adenylyl cyclase	Serotonergic auto receptor Control release of ACh and NA Contraction of vascular smooth muscle	Ergot alkaloids Triptans	
5-HT _{ID}	CNS Cranial blood vessel PNS Vascular smooth muscle	Inhibition of adenylyl cyclase	Serotonergic auto receptor GABAergic and cholinergic heteroreceptor Vasoconstriction of intracranial blood vessel	Ergot alkaloids Triptans	
5-HT _{1e}	CNS Cortex striatum PNS mRNA in vascular tissue	Inhibition of adenylyl cyclase	Unknown	None	
5-HT _{1F}	CNS Cortex, spinal cord, hippocampus, locus coeruleus, hypothalamus, amygdala, cerebellum, dorsal raphe nucleus, pineal gland PNS Uterus, mesentery, vascular smooth muscle	Inhibition of adenylyl cyclase	Trigeminal neuroinhibition in guinea pig and rat	Lasmiditan	


Lasmiditan

- Lasmiditan is a novel selective 5-HT(1F) receptor agonist.
- In the intravenous placebo-controlled RCT, lasmiditan doses of 2.5-45 mg were used, and there was a linear association between headache relief (HR) rates and dose levels (P < 0.02). For lasmiditan 20 mg, HR was 64 % and for placebo it was 45 % (NS).
- In the oral placebo-controlled RCT, lasmiditan doses of 50, 100, 200 and 400 mg were used. For HR, all doses of lasmiditan were superior to placebo (P < 0.05). For lasmiditan 400 mg, HR was 64 % and it was 25 % for placebo.

Lasmiditan Efficacy

Migraine Associated Symptoms

Lasmiditan

- Adverse events (AEs) emerging from the treatment were reported by 22 % of the patients receiving placebo and by 65, 73, 87 and 87 % of patients receiving 50, 100, 200 and 400 mg, respectively. The majority of AEs after lasmiditan 100 and 400 mg were moderate or severe.
- For the understanding of migraine pathophysiology, it is very important to note that a selective 5-HT(1F) receptor agonist like lasmiditan is effective in the acute treatment of migraine. Thus, migraine can be treated with a drug that has no vasoconstrictor ability.
- While lasmiditan most likely is effective in the treatment of migraine attacks it had, unfortunately, a high incidence of CNS related AEs in the oral RCT.

From: Timolol Eyedrops in the Treatment of Acute Migraine Attacks A Randomized Crossover Study

JAMA Neurol. Published online May 14, 2018. doi:10.1001/jamaneurol.2018.0970

	Mean	Participant									
Clinical Question	(SD), %	1	2	3	4	5	6	7	8	9	10
Migraine Attacks With a Sever	ity of None or N	lild At 2 l	ո, %								
Placebo	67 (30)	44	54	0	91	71	80	63	100	67	0
Timolol	78 (31)	80	18	100	72	100	92	89	100	100	25
Total No. of Migraine Attacks											
Placebo	8 (6.7)	9	24	11	11	7	5	8	1	3	1
Timolol	11.8 (11)	20	38	5	11	4	12	9	8	7	4
Exit Survey Results While Part	icipant Was Stil	l Masked									
Overall effectiveness (1 to 4)											
Placebo	1.4 (0.9)	1	1	1	4	1	1	1	1	1	1.5
Timolol	2.4 (1.4)	4	1	2	1	2	4	4	1	4	1
Desire to use compared with current treatment											
Would use in place of an abortive treatment?	Yes for 2.5 of 10 (25%)	No	No	No	Yes for placebo	No	Maybe	Yes	No	Yes	No
Would use in addition to abortive treatment?	Yes for 5.5 of 10 (55%)	Yes	No	No	Yes for placebo	Yes	Yes	Yes	Maybe	Yes	No

^a The mean value for percentage of migraine attacks with none or mild severity.

Table Title:

Date of download: 5/17/2018

Summary and Participants' Survey Responses While Using Placebo and Timolola

October 18, 2017 ARTICLE

Randomized study of IV prochlorperazine plus diphenhydramine vs IV hydromorphone for migraine

Benjamin W. Friedman, Eddie Irizarry, Clemencia Solorzano, Alexander Latev, Karolyn Rosa, Eleftheria Zias, David R. Vinson, Polly E. Bijur and E. John Gallagher

First published October 18, 2017, DOI: https://doi.org/10.1212/WNL.0000000000004642

- Participants received hydromorphone 1 mg or prochlorperazine 10 mg + diphenhydramine 25 mg. Diphenhydramine was administered to prevent akathisia, a common side effect of IV prochlorperazine.
- The primary outcome was sustained headache relief, defined as a headache level of mild or none within 2 hours and maintaining that level for 48 hours without rescue medication.
- The primary outcome was achieved in the prochlorperazine arm by 37 of 62 (60%) participants and in the hydromorphone arm by 20 of 64 (31%) participants (difference 28%, 95% confidence interval 12–45, number needed to treat 4, 95% confidence interval 2–9).
- IV hydromorphone is substantially less effective than IV prochlorperazine for the treatment of acute migraine in the ED and should not be used as first-line therapy.

Is there a link between migraine and cervical artery dissection?

- **Findings** In a cohort study of 2485 patients aged 18 to 45 years with first-ever acute ischemic stroke, a history of migraine, especially the subtype without aura, was independently associated with cervical artery dissection. The strength of this association was higher in men and in younger individuals.
- Meaning In young patients with ischemic stroke, migraine is consistently associated with cervical artery dissection. This finding implicates possible common biologic mechanisms underlying the 2 disorders.

JAMA Neurol. 2017;74(5):512-518. doi:10.1001/jamaneurol.2016.5704