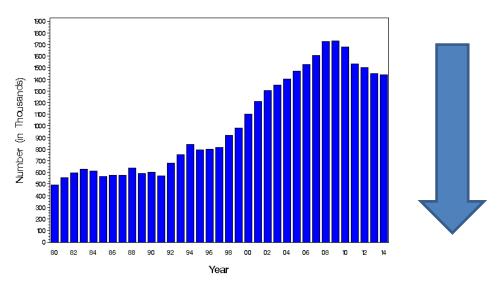
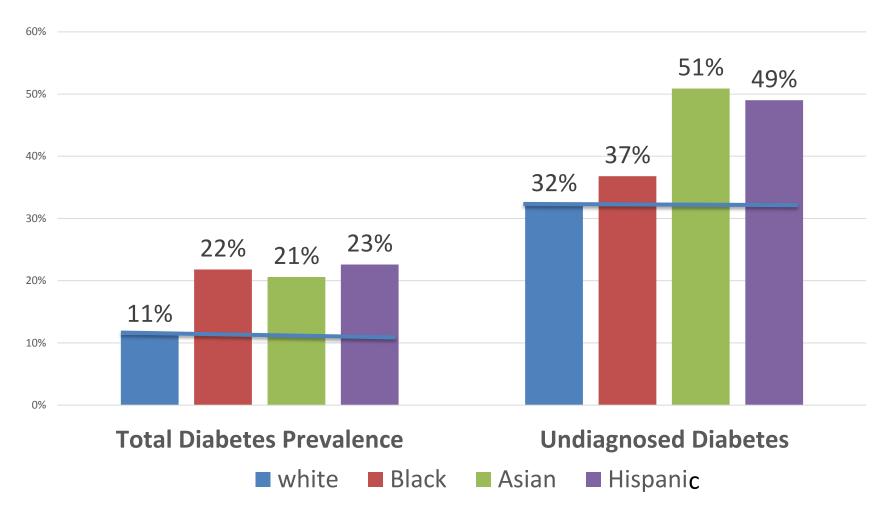
Reimagining Diabetes Care: Leveraging Digital Health Technologies

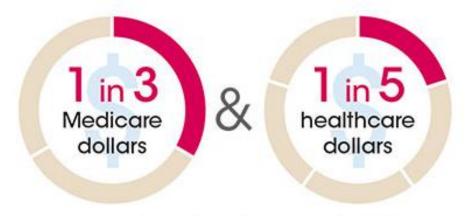

William Hsu, MD

Current Diabetes Care Model What's Not to Like?


Achievement of Goals in US Diabetes Care, 1999–2010

Factor or Practice	1999–2002	2003–2006	2007–2010	Change from 1999-2002 to 2007-2010 (95% CI)	Change from 2003-2006 to 2007-2010 (95% CI)	
	% of survey participants			percentage points		
Risk factors						
Glycated hemoglobin						
>9.0%	18.4	13.0	12.6	-5.8 (-10.5 to -1.1)	-0.4 (-3.8 to 3.0)	
<8.0%	67.4	78.0	79.1	11.7 (6.3 to 17.1)	1.1 (-3.5 to 5.7)	
<7.0%	44.3	56.8	52.2	7.9 (0.8 to 15.0)	-4.6 (-11.1 to 1.9)	
Blood pressure <130/80 mm Hg	39.6	45.3	51.3	11.7 (5.7 to 17.7)	6.0 (0.4 to 11.6)	
LDL cholesterol†						
<100 mg/dl	36.0	46.6	56.8	20.8 (11.6 to 30.0)	10.2 (2.5 to 17.9)	
<70 mg/dl for persons with CVD	15.9	23.2	27.5	11.6 (-4.1 to 27.3)	4.3 (-8.5 to 17.1)	
Current smoker, self-reported or cotinine >10 ng/ml	24.0	23.4	22.3	-1.7 (-6.2 to 2.8)	-1.1 (-5.4 to 3.2)	
Glycated hemoglobin, blood-pressure, and LDL cholesterol targets and nonsmoking status achieved	4.6	9.5	14.3	9.7 (5.1 to 14.3)	4.8 (-0.4 to 10.0)	

N Engl J Med 2013;368:1613-24

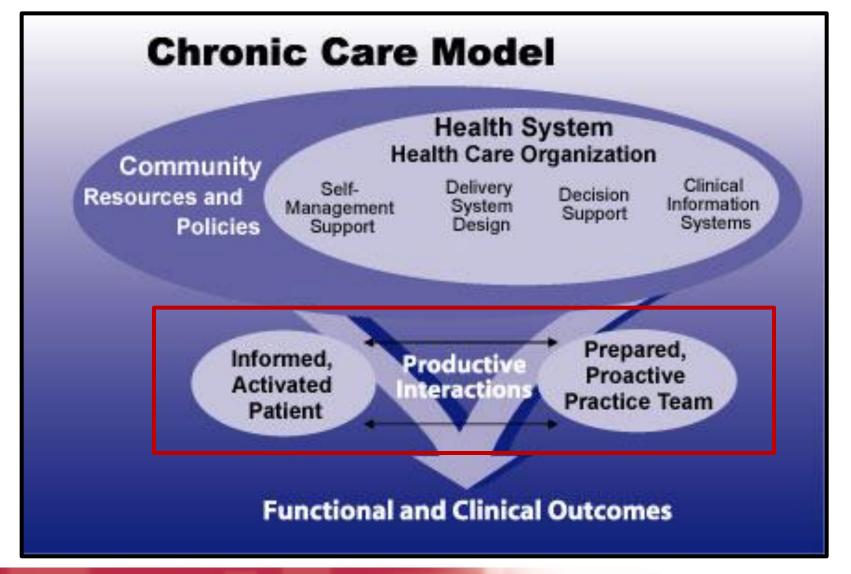

Disparities Across Ethnicity

THE COST OF DIABETES

Diabetes and pre-diabetes cost America

\$322 billion annually

are spent caring for people living with diabetes in the U.S.



Back to the Patient

24 x 7 x 365
"It's A Really Hard Job!"

Current Care Model Is A Direct Result of the Reimbursement Model

Radical new collaborations catalyzing a revolution in health.

₽ Follow

Subscribe

Search

Health and Wellness Innovation 2013

Project Videos are Now Online

CollaboRhythm Redefining healthcare delivery

Giving patients the chance to speak

Collective Discovery Discovering cures in 'everyday experiments'

Oovit PT Making physical therapy fun and effective

WeightMate Setting to know your food moods

People

Frank Moss PhD Principal Investigator

John Moore MD PhD Candidate

lan Eslick PhD Candidate

Scott Gilroy Software Developer

Mar Gonzalez Franco Visiting PhD Student

Recent Blog Posts

Health and Wellness Innovation 2013 Covered in Fast Company

Health and Wellness Innovation 2013 Awards

Health and Wellness 2013 - 80 Amazing Participants - 6 Exciting Projects for Patient Empowerment

GeckoCap, a Health and Wellness Innovation 2012 Spinoff, is Gaining Momentum

Moore Explores Apprenticeship as a Powerful New Paradigm of Chronic Disease Management

Chameleon Wins Health and Wellness Innovation 2012

Frank Moss in the Times - Consumer Health Can

Focus on Problem Area in Diabetes

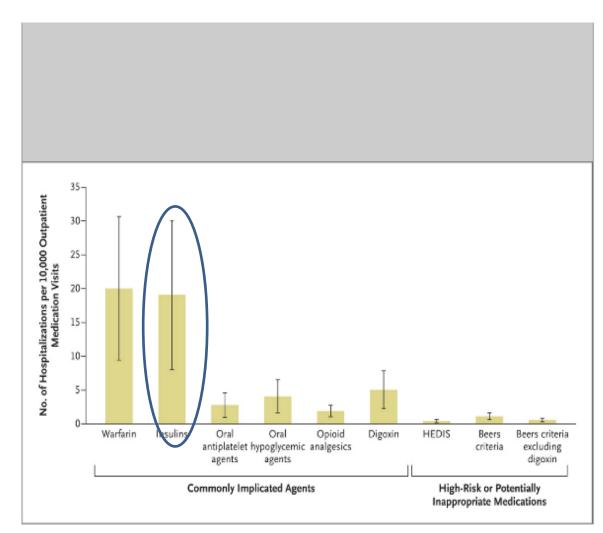


Figure 1. Estimated Rates of Emergency Hospitalizations for Adverse Drug Events in Older U.S. Adults, 2007–2009.

Estimates were based on hospitalization data from the National Electronic Injury Surveillance System-Cooperative Adverse Drug Event Surveillance project for 2007 through 2009, and data for outpatient visits during which medications were ordered or continued are from the National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey for 2007 and 2008. High-risk medications are those designated as such in the elderly by the 2011 Healthcare Effectiveness Data and Information Set (HEDIS).12 Potentially inappropriate medications are those identified by the updated 2002 Beers criteria for potentially inappropriate medication use in older adults. 13 All high-risk or potentially inappropriate medications were included in the analysis, regardless of the dose, frequency of use, formulation (e.g., short-acting), or duration of use. I bars denote 95% confidence intervals. For oral antiplatelet agents, the coefficient of variation was greater than 30%.

N Engl J Med 2011; 365:2002-2012

Proof of Concept

Develop a DM management program to support individuals with type 2 diabetes working with health coaches to initiate and titrate basal insulin, guided by the PREDICTIVE 303 algorithm and hypoglycemia treatment guidelines.

Rethinking Educational Model

- Approximately 5% of Medicare beneficiaries with newly diagnosed diabetes used DSMT services.
- 6.8% of privately insured, newly diagnosed adults participated in DSMT during the first year after diagnosis of diabetes.

Drag 'N Cook

Theoretical Framework

Cognitive Apprenticeship

Coach Articulates

Coach Fades and support

Patient Emulates

Enabled through Digital Technology Connectivity

Hypothesis

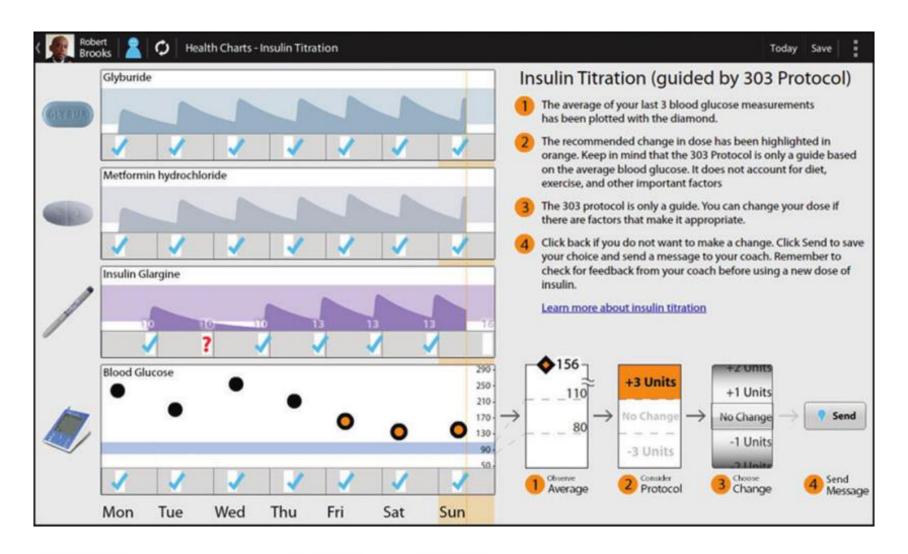
 Use of system with HCP helps individuals starting basal insulin achieve better glycemic control compared with standard clinical practice

Materials and Methods

- \blacksquare RCT, 12 \pm 2 weeks
- Type 2 DM, ≥ 18 y.o. A1c 9-14%
- Decided to be on basal insulin by HCP
- Sees an educator to start insulin
- V1 collect A1c, DTSQ, clinical data
- Randomization to tablet vs standard F/U
- Control received Joslin Care

Outcomes Analysis

- Primary A1c change in 3 months
- Secondary A1c <7%, patient satisfaction,
 hypoglycemia, time HCP and patients spent
- Intention to treat analysis


Diabetes Management System

- Open source CollaboRhythm software, designed at MIT Media Lab
- Self-tracking tools, shared decision-making interfaces, streamlined communication tools, decision support tools for hypoglycemia

Interventional Group

- Trained on tablet
- Glucosemeter wirelessly connected to tablet
- QAM glucose check to determine night dose
- Use PREDICTIVE 303 as a guide
- No face to face appointment with HCP
- No change in non-insulin meds
- Start on 10-15 units and titrate up
- Dose adjustment communicated via tablet

Insulin Titration Decision Support

Interventional Group Continued

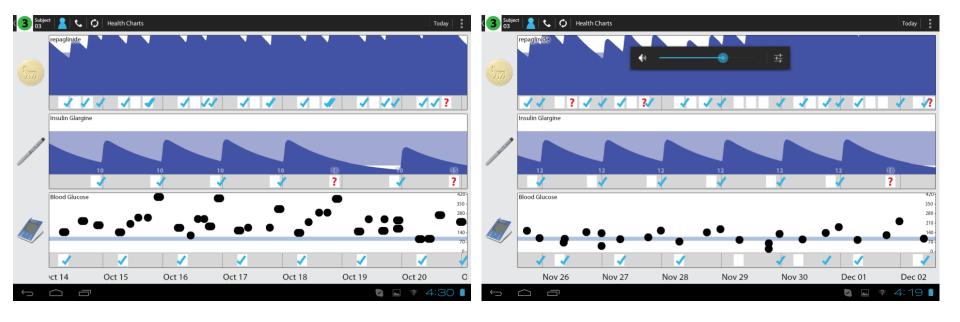
- Initially daily communication, then fades
- Let patient decide on insulin doses over time
- No fax, call, face to face
- Instead use costumed interface, text message or real-time video and shared screen control
- Time spent, hypo, tracked electronically

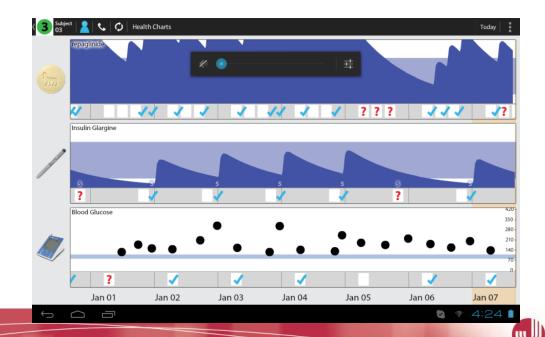
Results

Total 40 subjects

20
Interventional

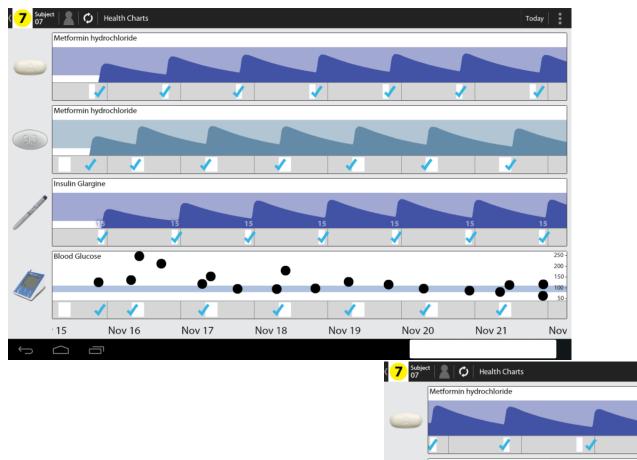
1 dropped out

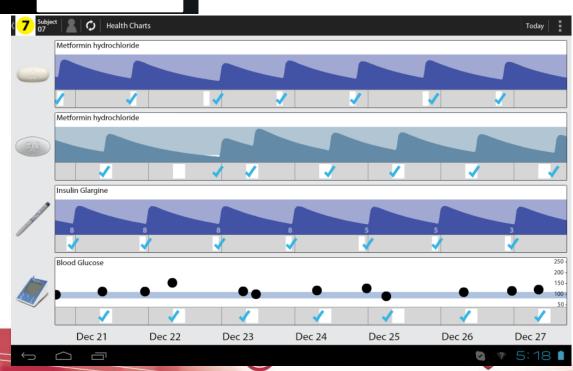

20 Control 4 dropped out


Case Study #1

JK is a 54 y.o. woman

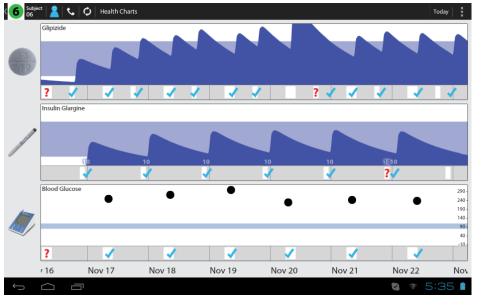
- 1 year history of DM
- BMI 21.3
- HbA1c 14.1%
- was started on repaglinide 1mg tid and glargine

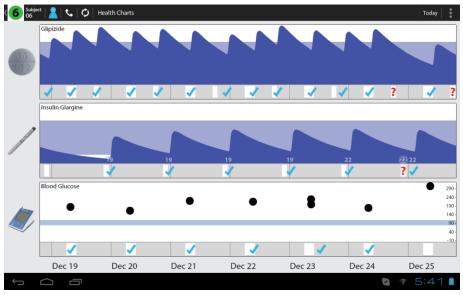




Case Study #2

- 32 y.o. Caucasian male
- Type 2 DM, diagnosed 2007
- BMI 27
- HbA1c 9.2%
- On metformin 500mg in am and 1000mg in pm





Case Study #3

- 80 y.o. Caucasian woman
- Type 2 DM, diagnosed 2002
- BMI 42.8
- HbA1c 12.1
- Started on glargine and glipizide 5mg bid

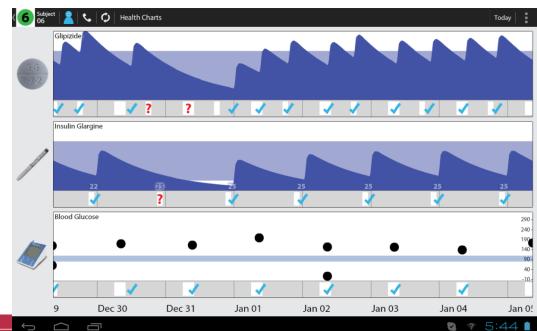
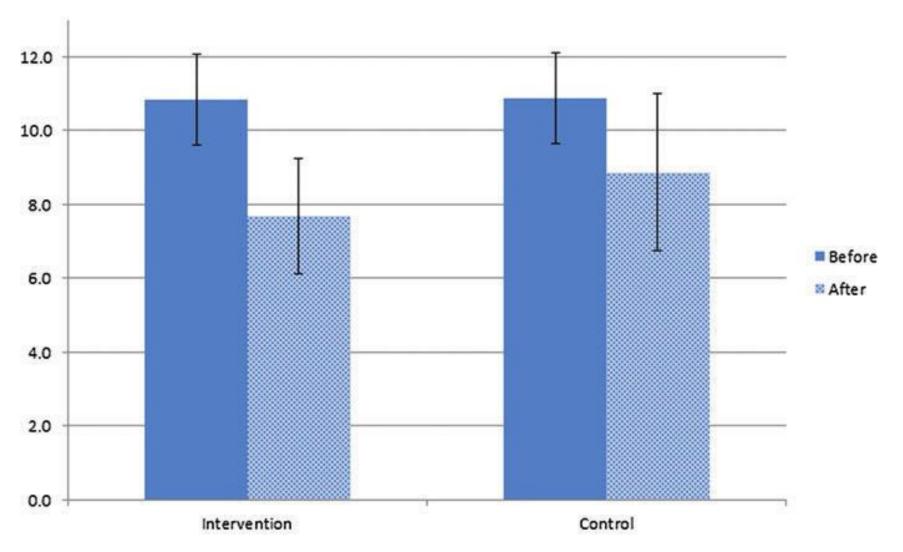
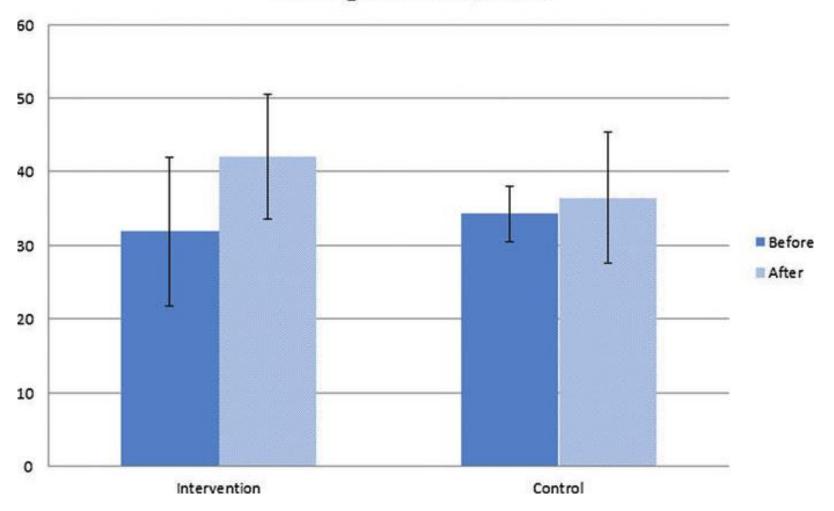



Table 1. Baseline Characteristics (N=40)

	Control group (n=20)	Intervention group (n=20)	P value
Age (years)	53.8	53.3	0.90
Weight (pounds)	211.1	203.9	0.64
Height (inches)	68.7	67.4	0.27
Body mass index (kg/m ²)	31.7	30.8	0.63
Years from diagnosis	9.0	9.6	0.79
HbA1c (%)	10.9	10.8	0.92
Insulin dosage (units)	13.3	12.0	0.34
Non-insulin agents (n)	1.8	1.9	0.49
DTSQ score	34.3	31.9	0.41

DTSQ, Diabetes Treatment Satisfaction Questionnaire; HbA1c, hemoglobin A1c.

Change in HbA1c in 3 months



Hsu et al. Diabetes Technol Ther. 2016

Additional Results

- Mean for first three glucose levels in month one vs month 3 (186.8 \pm 56.5mg/dL vs. 141.5 \pm 25.7mg/dL: P = 0.044)
- No significant changes (-0.48 pound in the intervention group vs. 0.87 pound in the control group; P = 0.9)
- The final insulin dose was 24.6 ± 15.0 units (0.27 units/kg) in the intervention group and 21.9 ± 25.0 units (0.25 units/kg) in the control group (P = 0.69).
- Four subjects had hypo in Intervention vs two

Change in DTSQ Score

Qualitative Results

- Feel less anxious and more motivated to get "back on track when I slip"
- "I am excited to see what it [glucose reading] is going to say each day."
- "It's comforting to know that they [clinician coaches] are lways there."
- "I like that it is convenient for me to communicate with my coach."
- "It [communication with my coach] did not feel intrusive."

- Subjects felt empowered to make insulin adjustments collaboratively: "I enjoy the power sharing in making decisions on insulin doses."
- "I feel more equal with the coach in making decision about my health"
- Subjects felt that they could now make the connection between their glucose reading and their behavior: "I am more conscious of what I eat now." "I didn't know that I felt bad before." "I understand the reasons behind the decision (of changing insulin dose) muchbetter."

Complaints

Subject complaints mainly focused on troubles connecting with the server via their tablet computers, highlighting the importance for a smooth connectivity in the technology design

TABLE 2. INTERACTION TIME BETWEEN HEALTHCARE PROVIDERS AND SUBJECTS DURING THE STUDY PERIOD

	Mean face-to-face time (min) with ^a			Mean	lean Mean instruction		Total interaction time (min) ^b	
Group	MD/ NP	CDE	Virtual visit time (min)		time for using the app (min)	Mean phone time (min)	Excluding app training	Including app training
Intervention Control	NA 20.0	NA 48.8	22.5 N/A	43.4 NA	40.0 NA	NA 12.8	65.9 81.6	105.9 81.6

Time excluded the initial and exit visits.

^bNo significant difference measured.

App, application; CDE, certified diabetes educator; MD, medical doctor; NA, not applicable; NP, nurse practitioner.

Discussions

Acknowledgement

Aldo Rossini MD

Karen Lau RD

Sue Ghiloni RN, CDE

Paige Ricci

- BIDMC: Dr. Martin Abrahamson
- MIT Collaborators: John Moore, Scott Gilroy
- Harvard CT Chan School of Public Health: Ruyi Huang
- U Massachusetts Medical School: Hung Le